Note
Go to the end to download the full example code.
Compare Fourier Model and T2* Model for Stack of Spirals trajectory#
This examples walks through the elementary components of SNAKE.
Here we proceed step by step and use the Python interface. A more integrated
alternative is to use the CLI snake-main
# Imports
from snake.core.simulation import SimConfig, default_hardware, GreConfig
from snake.core.phantom import Phantom
from snake.core.smaps import get_smaps
from snake.core.sampling import StackOfSpiralSampler
from mrinufft import get_operator
# For faster computation, try to use the GPU
NUFFT_BACKEND = "stacked-gpunufft"
COMPUTE_BACKEND = "cupy"
try:
import cupy as cp
if not cp.cupy.cuda.runtime.getDeviceCount():
raise ValueError("No CUDA Device found")
get_operator("stacked-gpunufft")
except Exception:
try:
get_operator("stacked-finufft")
except ValueError as e:
raise ValueError("No NUFFT backend available") from e
NUFFT_BACKEND = "stacked-finufft"
COMPUTE_BACKEND = "numpy"
print(
f"Using NUFFT backend: {NUFFT_BACKEND}", f"Using Compute backend: {COMPUTE_BACKEND}"
)
Using NUFFT backend: stacked-finufft Using Compute backend: numpy
sim_conf = SimConfig(
max_sim_time=3,
seq=GreConfig(TR=50, TE=22, FA=12),
hardware=default_hardware,
fov_mm=(181, 217, 181),
shape=(60, 72, 60),
)
sim_conf.hardware.n_coils = 1 # Update to get multi coil results.
sim_conf.hardware.field_strength = 7
phantom = Phantom.from_brainweb(sub_id=4, sim_conf=sim_conf, tissue_file="tissue_7T")
Traceback (most recent call last):
File "/home/runner/work/snake-fmri/snake-fmri/examples/anatomical/example_gpu_anat_spirals.py", line 59, in <module>
phantom = Phantom.from_brainweb(sub_id=4, sim_conf=sim_conf, tissue_file="tissue_7T")
File "/home/runner/work/snake-fmri/snake-fmri/src/snake/core/phantom/static.py", line 112, in from_brainweb
tissues_mask = get_mri(sub_id, contrast="fuzzy").astype(np.float32)
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/brainweb_dl/mri.py", line 173, in get_mri
data = _get_mri_sub20(
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/brainweb_dl/mri.py", line 91, in _get_mri_sub20
filename = get_brainweb20(
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/brainweb_dl/_brainweb.py", line 329, in get_brainweb20
Parallel(n_jobs=-1, backend="threading")(
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/joblib/parallel.py", line 2007, in __call__
return output if self.return_generator else list(output)
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/joblib/parallel.py", line 1650, in _get_outputs
yield from self._retrieve()
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/joblib/parallel.py", line 1754, in _retrieve
self._raise_error_fast()
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/joblib/parallel.py", line 1789, in _raise_error_fast
error_job.get_result(self.timeout)
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/joblib/parallel.py", line 745, in get_result
return self._return_or_raise()
File "/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/joblib/parallel.py", line 763, in _return_or_raise
raise self._result
requests.exceptions.ConnectTimeout: HTTPConnectionPool(host='brainweb.bic.mni.mcgill.ca', port=80): Max retries exceeded with url: /cgi/brainweb1/?do_download_alias=subject04_bck&format_value=raw_short&zip_value=gnuzip&download_for_real=%5BStart+download%21%5D (Caused by ConnectTimeoutError(<urllib3.connection.HTTPConnection object at 0x7f2a349ac520>, 'Connection to brainweb.bic.mni.mcgill.ca timed out. (connect timeout=None)'))
Setting up Acquisition Pattern and Initializing Result file.#
# The next piece of simulation is the acquisition trajectory.
# Here nothing fancy, we are using a stack of spiral, that samples a 3D
# k-space, with an acceleration factor AF=4 on the z-axis.
sampler = StackOfSpiralSampler(
accelz=2,
acsz=0.1,
orderz="top-down",
nb_revolutions=12,
obs_time_ms=30,
constant=True,
)
smaps = None
if sim_conf.hardware.n_coils > 1:
smaps = get_smaps(sim_conf.shape, n_coils=sim_conf.hardware.n_coils)
The acquisition trajectory looks like this
traj = sampler.get_next_frame(sim_conf)
from mrinufft.trajectories.display import display_3D_trajectory
display_3D_trajectory(traj)
traj.shape
Adding noise in Image#
from snake.core.handlers.noise import NoiseHandler
noise_handler = NoiseHandler(variance=0.01)
Acquisition with Cartesian Engine#
The generated file example_EPI.mrd
does not contains any k-space data for
now, only the sampling trajectory. let’s put some in. In order to do so, we
need to setup the acquisition engine that models the MR physics, and get
sampled at the specified k-space trajectory.
SNAKE comes with two models for the MR Physics:
model=”simple” :: Each k-space shot acquires a constant signal, which is the image contrast at TE.
model=”T2s” :: Each k-space shot is degraded by the T2* decay induced by each tissue.
# Here we will use the "simple" model, which is faster.
#
# SNAKE's Engine are capable of simulating the data in parallel, by distributing
# the shots to be acquired to a set of processes. To do so , we need to specify
# the number of jobs that will run in parallel, as well as the size of a job.
# Setting the job size and the number of jobs can have a great impact on total
# runtime and memory consumption.
#
# Here, we have a single frame to acquire with 60 frames (one EPI per slice), so
# a single worker will do.
from snake.core.engine import NufftAcquisitionEngine
engine = NufftAcquisitionEngine(model="simple", snr=30000)
engine(
"example_spiral.mrd",
sampler,
phantom,
sim_conf,
handlers=[noise_handler],
smaps=smaps,
worker_chunk_size=60,
n_workers=1,
nufft_backend=NUFFT_BACKEND,
)
engine_t2s = NufftAcquisitionEngine(model="T2s", snr=30000)
engine_t2s(
"example_spiral_t2s.mrd",
sampler,
phantom,
sim_conf,
handlers=[noise_handler],
worker_chunk_size=60,
n_workers=1,
nufft_backend=NUFFT_BACKEND,
)
Simple reconstruction#
Getting k-space data is nice, but
SNAKE also provides rudimentary reconstruction tools to get images (and check
that we didn’t mess up the acquisition process).
This is available in the companion package snake.toolkit
.
Loading the .mrd
file to retrieve all information can be done using the
ismrmd
python package, but SNAKE provides convenient dataloaders, which are
more efficient, and take cares of managing underlying files access. As we are
showcasing the API, we will do things manually here, and use only core SNAKE.
from snake.mrd_utils import NonCartesianFrameDataLoader
from snake.toolkit.reconstructors import (
SequentialReconstructor,
ZeroFilledReconstructor,
)
zer_rec = ZeroFilledReconstructor(
nufft_backend=NUFFT_BACKEND, density_compensation=None
)
seq_rec = SequentialReconstructor(
nufft_backend=NUFFT_BACKEND,
density_compensation=None,
max_iter_per_frame=30,
threshold=2e-6,
optimizer="fista",
compute_backend=COMPUTE_BACKEND,
)
with NonCartesianFrameDataLoader("example_spiral.mrd") as data_loader:
adjoint_spiral = abs(zer_rec.reconstruct(data_loader)[0])
cs_spiral = abs(seq_rec.reconstruct(data_loader)[0])
with NonCartesianFrameDataLoader("example_spiral_t2s.mrd") as data_loader:
adjoint_spiral_T2s = abs(zer_rec.reconstruct(data_loader,sim_conf)[0])
cs_spiral_T2s = abs(seq_rec.reconstruct(data_loader)[0])
with NonCartesianFrameDataLoader("example_spiral.mrd") as data_loader:
traj,data = data_loader.get_kspace_frame(0)
data.shape
Plotting the result#
import matplotlib.pyplot as plt
from snake.toolkit.plotting import axis3dcut
fig, axs = plt.subplots(
2,
3,
figsize=(19, 10),
gridspec_kw=dict(wspace=0, hspace=0),
)
for ax, img, title in zip(
axs[0],
(adjoint_spiral, adjoint_spiral_T2s, abs(adjoint_spiral - adjoint_spiral_T2s)),
("simple", "T2s", "diff"),
):
axis3dcut(img.T, None, None, cbar=True, cuts=(40, 40, 40), ax=ax,width_inches=4)
ax.set_title(title)
for ax, img, title in zip(
axs[1],
(cs_spiral, cs_spiral_T2s, abs(cs_spiral - cs_spiral_T2s)),
("simple", "T2s", "diff"),
):
axis3dcut(img.T, None, None, cbar=True, cuts=(40, 40, 40), ax=ax,width_inches=4)
ax.set_title(title + " CS")
plt.show()
Total running time of the script: (2 minutes 14.912 seconds)