snake.core.handlers.activations.activations
#
Activation Handler.
Module Contents#
Classes#
Add activation inside the region of interest. for a single type of event. |
|
Activation Handler with block design. |
API#
- class snake.core.handlers.activations.activations.ActivationMixin[source]#
Bases:
snake._meta.LogMixin
Add activation inside the region of interest. for a single type of event.
- Parameters:
event_condition β array-like of shape (3, n_events) yields description of events for this condition as a (onsets, durations, amplitudes) triplet
hrf_model β Choice for the HRF, FIR is not
oversampling β Oversampling factor to perform the convolution. Default=50.
min_onset β Minimal onset relative to frame_times[0] (in seconds) events that start before frame_times[0] + min_onset are not considered. Default=-24.
roi_threshold (float, default 0.0) β If greater than 0, the roi becomes a binary mask, with roi_threshold as separation.
See also
nilearn.compute_regressors
- event_condition: pandas.DataFrame | numpy.ndarray = None#
- base_tissue_name = 'gm'#
- get_static(phantom: snake.core.phantom.Phantom, sim_config: snake.core.simulation.SimConfig) snake.core.phantom.Phantom [source]#
Get the static ROI.
- get_dynamic(phantom: snake.core.phantom.Phantom, sim_conf: snake.core.simulation.SimConfig) snake.core.phantom.DynamicData [source]#
Get dynamic time series for adding Activations.
- class snake.core.handlers.activations.activations.BlockActivationHandler[source]#
Bases:
snake.core.handlers.activations.activations.ActivationMixin
,snake.core.handlers.base.AbstractHandler
Activation Handler with block design.
- Parameters:
block_on (float) β time the block activation is on.
block_off (float) β time the block activation is off
duration (float) β Total duration of the pattern in seconds
offset (float, default 0) β Start time of the pattern in seconds
roi_tissue_name (str, default "ROI") β Name of the ROI tissue
event_name (str, default "block_on") β Name of the event
delta_r2s (float, default 1000.0) β Delta R2s value
hrf_model (str, default "glover") β HRF model
oversampling (int, default 50) β Oversampling factor
min_onset (float, default -24.0) β Minimal onset
roi_threshold (float, default 0.0) β ROI threshold
Notes
See Also the GLM module of Nilearn.
- __handler_name__ = 'activation-block'#