patch_denoise.simulation.phantom.mr_shepp_logan#
- patch_denoise.simulation.phantom.mr_shepp_logan(N, E=None, B0=3, T2star=False, zlims=(-1, 1))[source]#
Shepp-Logan phantom with MR tissue parameters.
- Parameters:
N (int or array_like) – Matrix size, (N, N, N), or (L, M, N).
E (array_like, optional) –
ex13 numeric matrix defining e ellipses. The columns of E are:
x-coordinate of the center of the ellipsoid (in [-1, 1])
y-coordinate of the center of the ellipsoid (in [-1, 1])
z-coordinate of the center of the ellipsoid (in [-1, 1])
x principal axis of the ellipsoid
y principal axis of the ellipsoid
z principal axis of the ellipsoid
Angle of the ellipsoid (in rad)
spin density, M0
Parameter A for T1 determination
Parameter C for T1 determination
Explicit T1 value (in sec, or np.nan if model is used)
T2 value (in sec)
chi (change in magnetic susceptibility)
If spin density is negative, M0, T1, and T2 will be subtracted instead of cummulatively added.
B0 (float, optimal) – Field strength (in Tesla).
T2star (bool, optional) – Use magnetic susceptibility values to return T2star values instead of T2. Gyromagnetic ratio is assumed to be that of hydrogen.
zlims (tuple, optional) – Only for 3D. Specify bounds along z. Often we only want the middle portion of a 3D phantom, e.g., zlim=(-.5, .5).
- Returns:
M0 (array_like) – The proton density.
T1 (array_like) – The T1 values.
T2 (array_like) – The T2 values. If T2star is True, then these will be T2 star values.
Notes
Implements the phantoms described in [1].
If parameters A, C are given and T1 is None, T1 is determined according to the equation:
T1 = A*B0^C
The original source code [2]
References