patch_denoise.denoise.adaptive_thresholding#
- patch_denoise.denoise.adaptive_thresholding(input_data, patch_shape, patch_overlap, mask=None, mask_threshold=50, recombination='weighted', method='SURE', nbsim=500, tau0=None, gamma0=None, noise_std=1.0, progbar=None)[source]#
Optimal thresholing denoising method.
- Parameters:
input_data (numpy.ndarray) – The input data to denoise. It should be a ND array, and the last dimension should a dynamically varying one (eg time).
progbar (tqdm.tqdm Progress bar, optiononal) – An existing Progressbar, default (None) will create a new one.
- noise_std: float or numpy.ndarray
An estimation of the spatial noise map standard deviation.
- method: str
The adaptive method to use “SURE” or “GSURE”
- nbsim:
Number of simulation for computing sure estimator
- tau:
Simulation parameter.
- gamma0:
Simulation parameter.
- Returns:
numpy.ndarray: The denoised sequence of volume numpy.ndarray: The weight of each pixel after the processing. numpy.ndarray: If possible, the noise variance distribution in the volume numpy.ndarray: If possible, the rank of each patch in the volume.
- Return type:
Notes
Reimplements the R package [1] in python.
References
See also
patch_denoise.space_time.AdaptiveDenoiser